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Abstract

We exploit four-dimensional tensor identities to give a very simple proof of the existence of a
Lanczos potential for a Weyl tensor in four dimensions with any signature, and to show that the
potential satisfies a simple linear second-order differential equation, e.g., a wave equation in Lorentz
signature. Furthermore, we exploit higher-dimensional tensor identities to obtain the analogous results
for (m, m)-forms in 2mdimensions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In analogy to the well-known vector potentialAa for the electromagnetic fieldFab =
A[a;b] , Lanczos[1] proposed — in four-dimensional curved spacetimes — a 3-tensor po-
tentialLabc for the Weyl tensorCabcd ,

Cabcd = Lab[c;d] + Lcd [a;b] − ∗L∗ab
[c;d] − ∗L∗

cd
[a;b]
, (1)
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where

Labc = L[ab]
c, Laba = 0, L[abc] = 0, (2a)

and the double dual is defined forLab[c;d] in four dimensions by

∗L∗ab
[c;d] = 1

4η
abijηcdpqLij

p;q. (2b)

It is easy to see that an equivalent version of(1) is

Cabcd = 2Lab[c;d] + 2Lcd
[a;b] − 2δ[a[c(L

b]e
d];e + Ld]e

b];e). (1′)

Bampi and Caviglia[2] pointed out that Lanczos’s proof was flawed, but gave an alternative
proof of the existence of such a potential in four dimensions, emphasising that the result
applied to anyWeyl candidate tensorWabcd , i.e., any tensor with the index symmetries

Wab
cd = W [ab]

cd = Wab
[cd] = Wcdab, Wa[bcd] = 0. (3)

Illge [3] has subsequently given a spinor proof of existence for Weyl candidates as part of
a formal Cauchy problem analysis, and more recently a shorter spinor proof of existence
has been given by Andersson and Edgar[4], which exploited a superpotential for Weyl
candidates, i.e., a potential for the Lanczos potential. The proof in[2] was for any signature,
while the spinor proofs in[3,4] are, by definition, only valid in Lorentz signature. The key
equation in the spinor proof in[4] was translated into tensors, from which a tensor argument
was constructed which is valid for all signatures; however, since there was no direct tensor
derivation of this key tensor equation, it is not possible to directly generalise this method
in [4] to n > 4 dimensions. In this paper, we will derive this key tensor equation in four
dimensionsdirectly by tensor methods, and so we will be able to explore the possibilities
of generalising to other dimensions.

Some generalisations have been given in[3–5] for other spinors, and of course these
results are also only valid for four-dimensional spaces with Lorentz signature.

It is important to note that although the electromagnetic potential exists in arbitrary
n dimensions, the existence of the Lanczos potential for Weyl candidates has only been
confirmed in four dimensions. There exists a straightforwardn-dimensional generalisation
of the expression(1):

Wab
cd = Lab[c;d]+Lcd [a;b] − 1

(n− 4)!

(
∗L∗i1i2···in−4ab

i1i2···in−4cd

− 4

(n− 2)
∗L∗i1i2···in−4in−3[a

i1i2···in−4in−3[cδ
d]
b] − ∗L∗

i1i2···in−4cd
i1i2···in−4ab

+ 4

(n− 2)
∗L∗

i1i2···in−4in−3[c
i1i2···in−4in−3[a

δ
d]
b]

)
, (4a)

where the double dual ofLa1a2
[b1;b2] is defined inn dimensions by

∗L∗a3a4···an
b3b4···bn = 1

4η
a1a2···anηb1b2···bnLa1a2

b1;b2. (4b)

The additional terms on the right-hand side of(4a) compared to(1) ensure thatWab
cd

is trace-free in all dimensions; it should be noted that the double dual ofLa1a2
[b1;b2] is
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trace-free in four dimensions only, and even its multiple trace∗L∗i1i2···in−4ab
i1i2···in−4cd is

not trace-free inn > 4 dimensions. More concisely, we can rearrange(4) as

Wab
cd = 2Lab[c;d] + 2Lcd

[a;b] − 4

(n− 2)
δ

[a
[c(L

b]e
d];e + Ld]e

b];e), (4′)

whereLabc andWab
cd retain the respective properties(2a) and (3). (See[6] for the properties

of double duals.) However, we emphasise that it has been shown that such a Lanczos potential
cannot existin general, in dimensionsn > 4 [7]. This result in[7] seems to contradict some
comments in[2], where it is suggested that there does exist, in general for arbitraryWab

cd ,
a Lanczos potential satisfying(4′) in five dimensions. (This conclusion is also stated to be
true forsixdimensions in[2], but it is easy to see that there is a simple computational error
in the last step of the argument, which when corrected excludes six dimensions.) So there
must be some unease about the validity of the (long and complicated) tensor proof in[2]
for four dimensions, since the same arguments as are used in the four-dimensional proof
seem to be used to prove existence in five dimensions in[2] — a result which we now know
not to be true. So it would be preferable to have an alternative proof of existence in four
dimensions using tensors, valid in all signatures.

More than 30 years ago, Lovelock[8] drew attention to the significance ofdimensionally
dependent tensor identities(DDIs), and exploited them to unify a number of apparently
unrelated results. Recently such identities have been shown to be a useful and powerful tool
which have been used to generalise spinor proofs to tensor proofs (valid in four-dimensional
spaces of all signatures), and also to generate, in higher dimensions, new results analogous
to familiar results in four dimensions[9–12].

In this paper, we will exploit two four-dimensional DDIs to give a very simple proof
of the local existence of a Lanczos potential of a Weyl candidate tensor in any signature;
the argument used is a tensor version of the spinor proof in[4]. Furthermore, although we
now know from[7] that there is no direct higher-dimensional analogue of(1) via (4) for all
Weyl candidates, there is the possibility of some other analogue to the Lanczos potential for
other types of tensorsin higher dimensions. By considering the higher-dimensional DDIs
analogous to the four-dimensional ones, we will establish local existence of potentials for
symmetric trace-free (m, m)-forms in 2mdimensions.

One of the most interesting properties of the Lanczos potential for the Weyl curvature
tensor is the fact that in vacuum it satisfies the very simple Illge wave equation in four-
dimensional spacetime,� Labc = 0 [3]; using DDIs we shall investigate analogous results
in other signatures and in higher dimensions.

2. Potentials in four dimensions

For a trace-free (2, 2)-formT abcd = T [ab]
cd = T ab[cd], T

ab
ad = 0, there exists afour-

dimensionalDDI [8,9]

T [ab
[cdδ

e]
f ] ≡ 0, (5)
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which, when differentiated twice with∇e∇f , yields

T abcd
;e
e = 2T [a|e|

cd
;b]
e + 2T ab[c|e|;ed] − 4T [a|e

[c|f ;f |
e|δb]d]

= 2T [a|e|
cd ;e

b] + 2T ab[c|e|;ed] − 4T [a|e
[c|f ;f |

e|δb]d] − RabieTiecd
− 2R[b

eciT
a]ei

d − 2R[b
ediT

a]e
c
i + 2R[b

iT
a]i
cd . (6)

Specialising to thesymmetric trace-free (2, 2)-formVabcd = V [ab]
cd = Vab[cd] =

Vcd
ab, V abad = 0 we define

Habc = Vabce;e = Vceab;e, (7)

where we have exploited the symmetry of the (2, 2)-form. It follows that

Haba = 0, (8)

and we obtain

∇2Vabcd + RabieViecd + 4Re
[a

[c|i|Vb]eid] − Reif [aVeif [cδ
b]
d] + Reif [cV

eif [aδ
b]
d]

+ 2R[a
iV
b]i
cd = 2Hcd

[a;b] + 2Hab[c;d] − 2H [a|e|
[c;|e|δb]d] − 2H[c|f |[a;|f |δb]d], (9)

where it is easily confirmed that the right-hand side has the structure of a trace-free sym-
metric (2, 2)-form. On the other hand, although the left-hand is easily confirmed to be
trace-free, it is not obviously asymmetric(2, 2)-form; in order for the left-hand side to have
that structure, it would be necessary that

RabijVijcd − RcdijV ijab − 2Reif [aVei f [cδ
b]
d] + 2Rei f [cV

ei f [aδ
b]
d] + 2R[a

iV
b]i
cd

− 2R[c
iVd]i

ab = 0. (10)

But precisely this DDI can be constructed from the DDI(5), via

RejidV
[ab

[ce δ
i]
j] = 0. (11)

Using(10) to rearrange(9), followed by the decomposition of the Riemann tensor into its
Weyl and Ricci parts, gives

∇2Vabcd + 1
2(CabijVijcd + CcdijV ijab) + 4Ce[a[c|i|Vb]eid] + 1

2RV
ab
cd

= 2Hcd
[a;b] + 2Hab[c;d] − 2H [a|e|

[c;|e|δb]d] − 2H[c|f |[a;|f |δb]d], (9′)

which not only has the explicit structure of a trace-free symmetric (2, 2)-form on both sides
as required, but has also a considerably simpler left-hand side; note the absence of Ricci
scalar terms.

Now consideranytrace-free symmetric (2, 2)-formUabcd = U [ab]
cd = Uab[cd] = Ucdab,

Uabad = 0. We can always find a trace-free symmetric (2, 2)-form ‘superpotential’Vabcd
locally for Uabcd by appealing to the Cauchy–Kovalevskaya theorem which guarantees a
local analytic solution of

∇2Vabcd + 1
2(CabijVijcd + CcdijV ijab) + 4Ce[a[c|i|Vb]eid] + 1

2RV
ab
cd = Uabcd

(12)
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in a given background space. From the superpotentialVabcd we can then construct a potential
Habc from (7), and obtain the following result.

Theorem 1. In four dimensions, the trace-free symmetric(2, 2)-formUabcd has a trace-free
(2, 1)-form potentialHabc, given by

Uabcd = 2Hcd
[a;b] + 2Hab[c;d] − 2H [a|e|

[c;|e|δb]d] − 2H[c|f |[a;|f |δb]d] . (13)

Furthermore this potentialHabc satisfies

∇2Habc + (Hc
e[a −H [a|e|

c);e
b] −Habe;ec − δ[ac Hb]ed ;d

e − 3
2H[cde]R

deab

+ 3H [bde]Rc
a
ed − 2(Hce

[a −H [a|e|
c)R

b]e + 2HabeR
e
c + 2Hf [a

eδ
b]
c R

e
f

− 1
2H

ab
cR = Uabcd ;d. (14)

To obtain(14)we take the divergence of(13)and rearrange into the form

∇2Habc + (Hc
e[a −H [a|e|

c);e
b] −Habe;ec − δ[ac Hb]ed ;d

e + 2He[bdR
a]d
ec

+ 1
2(Hdec − 3H[cde] )Rdeab +Hef dδ[ac Rb]def + 3H [bde]Rc

a
ed + 2Hce[bRa]e

+HabeRce = Uabcd ;d. (15)

We now note that due to the existence of thefour-dimensionalDDI [9]

H [ab
[cδ
gh]
ef ] ≡ 0, (16)

we obtain

0 ≡ 12Rgh
efH [ab

[cδ
gh]
ef ] = 4He[bdR

a]d
ec +HdecRdeab + 2Hef dδ

[a
c R

b]d
ef

− 2HabeR
e
c + 4He[acR

b]
e − 4Hf [a

eδ
b]
c R

e
f +HabcR, (17)

whose substitution in(15) results in (14). (Alternatively, we could exploit the four-
dimensional identityC[ab

[cdδ
e]
f ] ≡ 0 [13,14].)

The fact that(14) is significantly simpler than(15) is apparent when we restrict the
superpotential by the additional symmetry of the type of the ‘first Bianchi identity’V[abc]d =
0, leading toH[abc] = 0 and the four-dimensional version of(4) for the Lanczos potential
Labc(≡ Habc) of a Weyl candidate tensorWab

cd(≡ Uabcd), or in particular,(1′) for the Weyl
tensorCabcd .

Corollary 2. In four dimensions, the Weyl tensorCabcd with the properties(3) has a
potentialLabc with the properties(2a), given by

Cabcd = 2Lcd
[a;b] + 2Lab[c;d] − 2L[a|e|

[c;|e|δb]d] − 2L[c|f |[a;|f |δb]d] . (18)

Furthermore this potentialLabc satisfies

∇2Labc + L[a
ce

;|e|b] − Labe;ec − δ[ac Lb]ed ;d
e + 2L[a

ceR
b]e
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+ 2LabeR
e
c + 2Lf [a

eδ
b]
c R

e
f − 1

2L
ab
cR = Cabcd ;d = −Rc[a;b] − 1

6δ
[a
c R

,b] . (19)

So, the simplification from(15) to (14) is especially significant when we are investigating
the LanczosLabc potential of a Weyl candidate, and in particular of the Weyl tensorCabcd ;
we note that the DDI(17) leads to the absence of all Weyl tensor terms in(19). The
absence of the Weyl tensor terms in(19)was completely unsuspected in the original tensor
calculations[1] and in a number of subsequent papers, e.g.,[15,16]. There it was assumed
that there existed, on the left-hand side of(14), explicit terms involving the Weyl tensor,
and that the substitution of the definition of the Lanczos potential into those terms would
lead to a nonlinear differential equation forLabc; indeed there were attempts to deal with
this equation by taking linear approximations[1,16]. The spinor derivations of Illge[3]
revealed the remarkable simplification of the absence of Weyl tensor terms meaning that
there were no nonlinear terms forLabc; this was subsequently confirmed by the tensor
derivation, similar to above, for all signatures in four dimensions in[13,14].

3. Differential gauge in four dimensions

For the Lanczos potential, it is well known[1–6,14] that, in general, there exists a
‘differential gauge’ termLabc;c which can be given any value; ‘the Lanczos differential
gauge’ is when this choice is zero. In particular, Eq.(19)would become even simpler if the
Lanczos differential gauge choice could be made. In the approach in the previous section
we do not have this gauge freedom, since we have fixed the potentialHabc in terms of the
superpotentialVabcd . In this section, we shall show how we can modify the approach in the
previous section to include this differential gauge freedom.

We begin as in the last section with the trace-free symmetric (2, 2)-formVabcd =
V [ab]

cd = Vab[cd] = Vcdab, Vabad = 0, and since we wish to concentrate on Weyl tensors,
we shall include the additional conditionV[abc]d = 0 from the beginning. The DDI(5) leads
to the differential equation(6).

Next we define

Labc = Vabce;e + 1
2(Fab;c − Fc[a;b] ) + 1

2δ
[a
c F

b]d
;d, (7∗)

whereFab is an arbitrary 2-form, and the last two terms ensure thatLabc retains the properties
(2a). Substitution of(7∗) into (6) leads to

∇2Vabcd + 1
2(CabijVijcd + CcdijV ijab) + 4Ce[a[c|i|Vb]eid] + 1

2RV
ab
cd

+ 3
2(Cab[c

eFd]e + Ccd [a
eF
b]e) = Cabcd, (12∗)

where

Cabcd = 2Lcd
[a;b] + 2Lab[c;d] − 2L[a|e|

[c;|e|δb]d] − 2L[c|f |[a;|f |δb]d], (13∗)

and the argument continues by exploiting the DDI(11)as in the last section. The presence
of the arbitrary 2-formFab in our definition(7∗) and in Eq.(12∗) does not effect either
Eqs.(18) or (19), and so we are free to chooseFab as we wish.
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By taking the divergence of(7∗) we find

∇2Fab + 4Cdef [aVb]def + 1
2Cab

deFde − 1
6RFab = 2Labc;c, (20)

and so instead of finding our superpotentialVabcd as a local solution of(12) as in the last
section, we can instead consider the coupled pair of Eqs.(12∗) and(19) which guarantee
locally solutionsVabcd andFab given the Weyl tensorCabcd and the differential gauge
Labc

;c; in particular we can choose the Lanczos differential gauge,Labc
;c = 0.

Hence we can modifyCorollary 2as follows.

Corollary 3. In four dimensions, the Weyl tensorCabcd with the properties(3) has a
potentialLabc with the properties(2a), given by

Cabcd = 2Lcd
[a;b] + 2Lab[c;d] − 2L[a|e|

[c;|e|δb]d] − 2L[c|f |[a;|f |δb]d] . (18∗)

Thereexists the freedom to choose thedifferential gaugeLabc
;c; in particular for the Lanczos

differential gaugeLabc;c = 0, this potentialLabc satisfies

∇2Labc + 2L[a
ceR

b]e + 2LabeR
e
c + 2Lf [a

eδ
b]
c R

e
f − 1

2L
ab
cR

= Cabcd ;d = −Rc[a;b] − 1
6δ

[a
c R

,b] . (19∗)

4. Potentials in even dimensions

An obvious generalisation involves the trace-free symmetric (m, m)-forms

Va1a2···am
b1b2···bm = V [a1a2···am]

b1b2···bm = Va1a2···am
[b1b2···bm] = Vb1b2···bm

a1a2···am,

(21a)

Va1a2···am
b1b2···bm = 0 (21b)

in even dimensionsn = 2m. By exploiting the 2m-dimensional DDI[8,9],

V [a1a2···am
[b1b2···bmδ

e]
f ] ≡ 0, (22)

and following the same arguments as in the four-dimensional case we obtain the following
result.

Theorem 4. In even n = 2m dimensions, the trace-free symmetric(m, m)-form
Ua1a2···am

b1b2···bm has a trace-free(m,m− 1)-form potentialHa1a2···am
b1b2···bm−1, given by

Ua1a2···am
b1b2···bm = mHb1b2···bm

[a1a2···am−1;am] +mHa1a2···am
[b1b2···bm−1;bm]

− 1
2m

2H [a1a2···am−1|e|[b1b2···bm−1;|e|δam]
bm]

− 1
2m

2H[b1b2···bm−1|e|[a1a2···am−1;|e|δam]
bm] . (23)
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Clearly a second-order equation for the potential can be obtained by taking the divergence
of (23), and it is of interest to know whether analogous simplifications as occurred in the
four-dimensional case also occur in higher dimensions.

As an example, we will examine the trace-free symmetric (3, 3)-form

Uabcdef = 3Hdef
[ab;c] + 3Habc[de;f ] − 9

2H
[ab|i|

[de;|i|δc]f ] − 9
2H[de|i|[ab;|i|δc]f ] (24)

in six dimensions. We obtained some simplifications in the four-dimensional case, when
we added the additional symmetry propertyV[abc]d = 0 to the superpotential leading to
the additional propertyL[abc] = 0 on the potential for the Weyl candidate, which of course
satisfiesW[abc]d = 0; in an analogous manner we can choose, in this six-dimensional case,

V[abcde]f = 0 leading toH[abcde] = 0 and henceU[abcde]f = 0. (25)

Again, in analogy with the four-dimensional case, we can introduce the differential gauge
freedom by redefining

Habcde = Vabcdef ;f + 1
2(Fabc[d;e] − Fde[ab;c] ) − 1

3δ
[a
[d(F

bc]i
e];i − Fe]ibc];i), (26)

whereFabcd is an arbitrary (3, 1)-form, and the last two terms ensure thatHabcde retains
the trace-free property as well as the property in(25). By an appropriate choice ofFabcd ,
we can choose the differential gauge

Habcde
;e = 0. (27)

Whenever we take the divergence of(24)we obtain

∇2Habcde + 2Habc[e|f |;d]
f + 3Hdef

[ab;c]f − 3
2H

[ab|i|
de;i

c] − 3H [ab|i
[e|f ;i|f |δc]d]

− 3
2Hdei

[ab;|i|c] − 3Hf [d|i|[ab;|if |δc]e] = Uabcdef ;f , (28)

which we can rearrange to

∇2Habcde + 2Habc[e|f |;f d] + 3Hdef
[ab;|f |c] − 3

2H
[ab|i|

de;i
c] − 3H [ab|i

[e|f ;i|f |δc]d]

− 3
2Hdei

[ab;|i|c] + {R⊗H}abcde = Uabcdef ;f , (29)

where{R⊗H}abcde represents the rather long collection of terms involving products of
the Riemann tensor and the potential tensor. Next making use of the additional symmetry
property (25), together with the differential gauge choice(27), Eq.(29)simplifies to

∇2Habcde + {R⊗H}abcde = Uabcdef ;f . (30)

A further rearrangement of(30) is possible, where, in analogy with the four-dimensional
case, we can exploit the six-dimensional DDI

RijklH
[abc

[deδ
kl]
ij] ≡ 0. (31)

Without further detailed calculations it is not possible to determine the extent of these sim-
plifications, and in particular whether all the Weyl tensor terms disappear, as happened in the
four-dimensional case. Even for the six-dimensional case, the calculations are considerably
longer than in the four-dimensional case, but it is emphasised that the same approach can
be used in all 2mdimensions.
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Unfortunately, unlike in the four-dimensional case, there do not seem obvious geometric
or physical candidates ((m,m)-forms withm > 2) to which these higher-dimensional results
can be applied.

5. Discussion

First we make some general comments on the uses of DDIs:

• A DDI for ndimensions is constructed by antisymmetrising overn+ 1 indices and so, in
general, is valid forndimensionsand lower. This applies to the results also in this paper;
however for these lower dimension the results are trivial since from[9] it is known that
the trace-free (p, q)-formVa1a2···ap

b1b2···bq is identically zero in dimensionsn < (p+ q).
• In our four-dimensional investigations inSection 2, we exploited the four-dimensional

DDI (5) on two occasions, and the DDI(16) on one occasion; in the analogous spinor
investigations[4] there was no need to supply this input explicitly since it is inbuilt into
the spinor formalism. The advantage of having the alternative tensor investigation is
that it suggests how and where generalisations can be made ton > 4 dimensions, and
signposts where simplifications might be expected. Inn > 4 dimensions we exploited
the analogous 2m-dimensional DDI(22) in the same two stages of the argument with
analogous results, and we also noted where we could use the other analogous DDI(31),
in the six-dimensional case. The full details of these calculations for six dimensions, and
more generally 2mdimensions will be reported elsewhere.

• Familiar and useful results in four dimensions can be generalised to higher dimensions by
the use of the analogous dimensionally dependent identities in higher dimensions. But the
type of tensor to which the familiar four-dimensional results apply is also generalised, and
so the higher-dimensional generalisations often apply to less common types of tensors.
So, for instance, there is no possibility of using dimensionally dependent identities to
obtain potentials for the Weyl tensor in dimensions higher than four.

• It might be suspected that more general identities than(5), (16), (22), (31)could be
obtained for forms without the trace-free restriction; this is not possible[9]. So, for
instance, there is no possibility of using dimensionally dependent identities to obtain
potentials for theRiemanntensor in four dimensions. Furthermore, no other identities
can be constructed by using the traces of the fundamental dimensionally dependent
identities such as(5), (16), (22), (31)because these collapse to be trivially zero.

We next make some comments specifically concerned with applications to Weyl and
Riemann tensors:

• We have seen that there are properties of the Weyl tensor which are very different in
four dimensions than in other dimensions; but this has nothing to do with its differen-
tial structure, since these special properties in four dimensions are algebraic, and arise
becauseanysymmetric trace-free (2, 2)-form has a very special role in four dimensions.

• It is clear that the existence of a Lanczos-type potential for a tensor — which requires
no differential conditions on the tensor — is a very different type of result from the
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existence of the electromagnetic potential — which follows from differential conditions
via Poincaŕe’s Lemma. However, it is interesting to note that the existence of the elec-
tromagnetic potential infour dimensions can be deduced via a Lanczos-type potential.

The additional results for the existence of other spinor potentials in[4] includes, for
instance, a spinor proof for the existence for the spinor potential for the electromagnetic
field; this is acomplexpotential, which can be reduced to a real potential by the first Maxwell
equationF[ab;c] = 0 [3,4].

From the point of view of general relativity, we note:

• We can appeal to stronger existence theorems[17] when we specialise to spaces with
Lorentz signature, and the second-order differential equations become wave equations.

• If (in Lorentz signature) we replace the Ricci tensor with the energy–momentum tensor
via Einstein’s equations in(19) or (19∗) we find that we have to solve for the Lanczos
potential from a wave equation whose other terms contain only the energy momentum
tensor. This linear wave equation forLabc, which carries much of the information of
Einstein’s equations, is considerably simpler than the nonlinear wave equation forCabcd ,
which is being used in a number of applications.

Finally we emphasise that, although it is not so obvious, it is possible to apply this
approach to (p, q)-forms even whenp �= q, as we will report in a subsequent paper.
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[9] S.B. Edgar, A. Ḧoglund, Dimensionally dependent tensor identities by double antisymmetrisation, J. Math.

Phys. 43 (2002) 659–677.
[10] S.B. Edgar, O. Wingbrant, Old and new results for superenergy tensors using dimensionally dependent

identities, J. Math. Phys. 44 (2003) 6140–6159.



Brain Edgar / Journal of Geometry and Physics 54 (2005) 251–261 261

[11] S.B. Edgar, On the structure of the new electromagnetic conservation laws, Class. Quant. Grav. 21 (2004)
L21–L25.

[12] S.B. Edgar, Necessary and sufficient conditions forn-dimensional conformal Einstein spaces via dimen-
sionally dependent identities, 2004. Preprint: arXiv:math.DG/0404238. To be published in J. Math. Phys.
(2004).

[13] S.B. Edgar, The wave equation for the Lanczos tensor/spinor and a new tensor identity, Mod. Phys. Lett. A
9 (1994) 479.
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