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Abstract

We exploit four-dimensional tensor identities to give a very simple proof of the existence of a
Lanczos potential for a Weyl tensor in four dimensions with any signature, and to show that the
potential satisfies a simple linear second-order differential equation, e.g., a wave equation in Lorentz
signature. Furthermore, we exploit higher-dimensional tensor identities to obtain the analogous results
for (m, m)-forms in 2n dimensions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In analogy to the well-known vector potentidl, for the electromagnetic field,;, =
Ala;p), Lanczog1] proposed — in four-dimensional curved spacetme a 3-tensor po-
tential L, for the Weyl tensoC .,

c,, = Lab[c;d] T+ Lot — *L*ab[c;d] % zd[a;hl (1)
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where

Labc = L[ab]c’ Laba =0, L[abc] =0, (Za)
and the double dual is defined fbf?|..4 in four dimensions by

*L*ab[c;d] = Z]inabijncdpql‘ijp;q- (2b)
It is easy to see that an equivalent versiorflgfis

CPeq = 2LP gy + 2L g — 26[( L g0 + Ly ). 1)

Bampi and Caviglig2] pointed out that Lanczos’s proof was flawed, but gave an alternative
proof of the existence of such a potential in four dimensions, emphasising that the result
applied to anyeyl candidate tensd¥ 4, i.€., any tensor with the index symmetries

W eq = WPl (g = Wpeqy = Weg™, Walbed) = 0. 3

llige [3] has subsequently given a spinor proof of existence for Weyl candidates as part of
a formal Cauchy problem analysis, and more recently a shorter spinor proof of existence
has been given by Andersson and Edgdr which exploited a superpotential for Weyl
candidates, i.e., a potential for the Lanczos potential. The pr¢2f imas for any signature,
while the spinor proofs iifi3,4] are, by definition, only valid in Lorentz signature. The key
equation in the spinor proof [d] was translated into tensors, from which a tensor argument
was constructed which is valid for all signatures; however, since there was no direct tensor
derivation of this key tensor equation, it is not possible to directly generalise this method
in [4] to n > 4 dimensions. In this paper, we will derive this key tensor equation in four
dimensiondirectly by tensor methodand so we will be able to explore the possibilities
of generalising to other dimensions.

Some generalisations have been givelfi3irb] for other spinors, and of course these
results are also only valid for four-dimensional spaces with Lorentz signature.

It is important to note that although the electromagnetic potential exists in arbitrary
n dimensions, the existence of the Lanczos potential for Weyl candidates has only been
confirmed in four dimensions. There exists a straightforwadimensional generalisation
of the expressiofil):

. 1 ininei, _aab
Wabcd _ Lab[c;d]"‘Lcd[a’b] _ (n - 4)| (*L*lllZ in—s4a bigein_acd
4 o 4 i b
_ i 2)* xi1ip ln74ln73[uill‘2'"in74in73[c‘8b]] _ *L*iligmin,;;cdlllz in—4a
4 g ain_ala od
+ m*L*1'11'2'--inf4infa[clll2 st 3[a‘sb]]) ’ (4a)

where the double dual df,,,["1*? is defined i dimensions by
Nbyby-by Lazas"H72. (4b)

The additional terms on the right-hand side(4&) compared ta(1) ensure thatv* .,
is trace-free in all dimensions; it should be noted that the double dua},gf!*1#2] is

*L*a3a4--~an aiaz---dy

1
b3ba--b, = i\ n
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trace-free in four dimensions only, and even its multiple tragg2- -4, . . ., is
not trace-free im > 4 dimensions. More concisely, we can rearra@@eas

Wabcd — 2Lab[c;d] + 2Lcd[a;b] _

=2t e + L), @)

whereL ., andW< ., retain the respective propertiga) and (3)(Sed6] for the properties

of double duals.) However, we emphasise that it has been shown that such a Lanczos potential
cannot exisin general, in dimensions > 4[7]. This resultin7] seems to contradict some
comments if2], where it is suggested that there does exist, in general for arbltréfty;,

a Lanczos potential satisfying’) in five dimensions. (This conclusion is also stated to be
true forsixdimensions iff2], but it is easy to see that there is a simple computational error

in the last step of the argument, which when corrected excludes six dimensions.) So there
must be some unease about the validity of the (long and complicated) tensor pf2pf in

for four dimensions, since the same arguments as are used in the four-dimensional proof
seem to be used to prove existence in five dimensiof8 ir- a result which we now know

not to be true. So it would be preferable to have an alternative proof of existence in four
dimensions using tensors, valid in all signatures.

More than 30 years ago, Lovelof# drew attention to the significancedifnensionally
dependent tensor identiti€®DIs), and exploited them to unify a number of apparently
unrelated results. Recently such identities have been shown to be a useful and powerful tool
which have been used to generalise spinor proofs to tensor proofs (valid in four-dimensional
spaces of all signatures), and also to generate, in higher dimensions, new results analogous
to familiar results in four dimensiorj—12]

In this paper, we will exploit two four-dimensional DDIs to give a very simple proof
of the local existence of a Lanczos potential of a Weyl candidate tensor in any signature;
the argument used is a tensor version of the spinor prof irFurthermore, although we
now know from[7] that there is no direct higher-dimensional analogu@ p¥ia (4) for all
Weyl candidates, there is the possibility of some other analogue to the Lanczos potential for
other types of tensoiis higher dimensions. By considering the higher-dimensional DDIs
analogous to the four-dimensional ones, we will establish local existence of potentials for
symmetric trace-freenf, m)-forms in 2ndimensions.

One of the most interesting properties of the Lanczos potential for the Weyl curvature
tensor is the fact that in vacuum it satisfies the very simple llige wave equation in four-
dimensional spacetimg] L., = 0[3]; using DDIs we shall investigate analogous results
in other signatures and in higher dimensions.

2. Potentials in four dimensions

For a trace-free (2, 2)-for® ., = T ., = T%.q), T% .4 = 0, there exists four-
dimensionaDDI [8,9]

lab [ed 5‘}!1 =0, (5)
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which, when differentiated twice witl, v/, yields
T o = 2Tl g ")y + 2T 1o g — ATV 1 11,60)
= orlalel ;. b1 4 2Tab[cle|;ed] _ 4T[““’[c\f;f'e|82]] — Rabier,,
— 2RV (i TV — 2RV o T+ 2RV TV g, (6)

Specialising to thesymmetric trace-free (2, 2)-formVe, = vietl , = vab| 4 =
Vo, vt ., = 0 we define

I_IabC — Vabce;e — Vceab;e’ (7)
where we have exploited the symmetry of the (2, 2)-form. It follows that
Haba - oﬂ (8)

and we obtain
Vzvabcd + RabieViecd + 4Re[u[c|i\vb]eid] _ Reif[aveif[csz]] + Reif[cVEif[u(SZ]]
+ ZR[aiVb]icd = 2Hcd[a;h] + 2Hab[c;d] — ZH[QIEI[C;‘e‘(SZ]] — ZH[C‘ﬂ[a;lfl(SZ]], (9)

where it is easily confirmed that the right-hand side has the structure of a trace-free sym-
metric (2, 2)-form. On the other hand, although the left-hand is easily confirmed to be
trace-free, it is not obviouslysymmetriq2, 2)-form; in order for the left-hand side to have
that structure, it would be necessary that

RTV;jeq = Regip V™ — 2RV, 1180} + 2R 1oV 18} + 2RI VY
— 2R Vg™ = 0. (10)
But precisely this DDI can be constructed from the §B), via
RIiqV1e L 8 = 0. (11)

Using (10) to rearrang€9), followed by the decomposition of the Riemann tensor into its
Weyl and Ricci parts, gives

VAV g + 3(CPTVijea + Coaij VI®P) + 4C L VIl gy + SRV oy
= 2H ! + 2H ey — 2HWY 1 87) — 2B 1187, @)

which not only has the explicit structure of a trace-free symmetric (2, 2)-form on both sides
as required, but has also a considerably simpler left-hand side; note the absence of Ricci
scalar terms.

Now consideanytrace-free symmetric (2, 2)-foroi® .,y = Ul g = U .q) = Ueg™,
U%,; = 0. We can always find a trace-free symmetric (2, 2)-form ‘superpotenti&ly,
locally for U*.; by appealing to the Cauchy—Kovalevskaya theorem which guarantees a
local analytic solution of

VAV g + 3(CPTVijeq + CogijVI®) + AC 11 VB ) + ARV g = Uy
(12)
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in agiven background space. From the superpote¥itial; we can then construct a potential
He . from (7), and obtain the following result.

Theorem 1. In four dimensionghe trace-free symmetr{@, 2)formU% ., has a trace-free
(2, 1)form potentialH* ., given by

U™ o = 2Hed! " + 2H o) — 2H1 1,180} — 2Hpe 1V 157). (13)
Furthermore this potentiaH,;,. satisfies
V2Ha, 4 (H e — plalel ). 0 gab e slapgble d 3 Hyeaq R4
+3HIR A g — 2(He M — HIN )RV 4+ 2H R+ 201 8 R¢
_ %Hath — yb . (14)

To obtain(14) we take the divergence ¢f3) and rearrange into the form
VZI_IabC + (Hce[a _ H[alelc).eb] _ Habe;ec _ 5[CaHb]ed;a'e + 2He[bdRa]deC

+ 3(Haee — 3Hicaq) R + HY! 48 R, + SHPHIR A + 2H 1 RO

+ HP, RS = U 4. (15)
We now note that due to the existence of thier-dimensionaDDI [9]
Hlbs8 = o, (16)
we obtain

0=12Ry* H[”b[C(SfJ]Z]] = 4HVP R, + H¥ Rg™ + 2H 48l RPM
—2H,R°. + 4H RY, — 4/l §PIR¢ o + HP (R, (17)
whose substitution in(15) results in(14). (Alternatively, we could exploit the four-
dimensional identit)C[a;,[Cd(Sif] = 0[13,14})
The fact that(14) is signlgicantly simpler tharf15) is apparent when we restrict the
superpotential by the additional symmetry of the type of the ‘first Bianchi ider\jty; s =
0, leading toH[4,] = 0 and the four-dimensional version @) for the Lanczos potential

Lape(= Hape) of a Weyl candidate tensév? .;(= U .4), or in particular(1) for the Weyl
tensorC? ..

Corollary 2. In four dimensionsthe Weyl tensoC* ., with the propertieg3) has a
potential L%, with the propertieg2a), given by

C® et = 2Led ™™ + 2L s — 218Vl 10 801 — 2Ly 111673 (18)
Furthermore this potential. ;. satisfies

VZLabC i L[ace;|e|b] _ Labe;ec _ S[CaLb]ed;de + ZL[aceRb]e
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+2L%, R 4+ 2171 88 Re f — 119 R = € ogd = —R e — LsleR Pl (19)

So, the simplification fronf15) to (14) is especially significant when we are investigating
the Lanczod. .. potential of a Weyl candidate, and in particular of the Weyl teiisgr,;

we note that the DD(17) leads to the absence of all Weyl tensor termg1if). The
absence of the Weyl tensor termqi9) was completely unsuspected in the original tensor
calculationd1] and in a number of subsequent papers, §1§,16] There it was assumed
that there existed, on the left-hand side(b#), explicit terms involving the Weyl tensor,
and that the substitution of the definition of the Lanczos potential into those terms would
lead to a nonlinear differential equation fby,.; indeed there were attempts to deal with
this equation by taking linear approximatiofis16]. The spinor derivations of IlIg¢3]
revealed the remarkable simplification of the absence of Weyl tensor terms meaning that
there were no nonlinear terms fér,,.; this was subsequently confirmed by the tensor
derivation, similar to above, for all signatures in four dimensiorid 814]

3. Differential gauge in four dimensions

For the Lanczos potential, it is well knowji—6,14]that, in general, there exists a
‘differential gauge’ termL,;,“:. which can be given any value; ‘the Lanczos differential
gauge’ is when this choice is zero. In particular, E@) would become even simpler if the
Lanczos differential gauge choice could be made. In the approach in the previous section
we do not have this gauge freedom, since we have fixed the potéfjtiain terms of the
superpotential/;.q. In this section, we shall show how we can modify the approach in the
previous section to include this differential gauge freedom.

We begin as in the last section with the trace-free symmetric (2, 2)-fétha, =
VIl g = Vebiq = Vea®, V4 = 0, and since we wish to concentrate on Weyl tensors,
we shallinclude the additional conditidfy,,j« = O from the beginning. The DOE) leads
to the differential equatio(6).

Next we define

Labc _ vabce;e + %(Fab;c _ Fc[a;b]) + %(SE’an]d;d» (7*)
whereF,, is an arbitrary 2-form, and the lasttwo terms ensurettitretains the properties
(2a) Substitution of 7*) into (6) leads to

V2V® oy + 5(CPVijea + CeaifVIP) 4 4C Ky V) + 3RV ey

+ %(Cab[ceFd]e + Ccd[aer]e) = Cabcd’ (12*)
where

Cabcd = ZLCd[a;b] + 2Lab[c;d] — ZL[alel[C;|e|3Z]] — 2L[C‘f‘[a;|'f|321], (139

and the argument continues by exploiting the D1) as in the last section. The presence
of the arbitrary 2-formF,,;, in our definition(7*) and in Eq.(12*) does not effect either
Eqgs.(18) or (19) and so we are free to choosg, as we wish.
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By taking the divergence dir*) we find
V2 Fup + 4C% 14 Vijder + 3Cab™ Fae — §RFup = 2Labc ", (20)

and so instead of finding our superpotentigl.; as a local solution of12) as in the last
section, we can instead consider the coupled pair of @§$) and(19) which guarantee
IocaIIy solutionsV,;,.¢s and F,;, given the Weyl tensoC,;,.s and the differential gauge
Lape'S; in particular we can choose the Lanczos differential gaiigg,© = 0.

Hence we can modif€orollary 2as follows.

Corollary 3. In four dimensionsthe Weyl tensoC?., with the propertie3) has a
potential L% with the propertieg2a), given by

Cabcd = 2Lcd[a’h] + 2Lab[c;d] — o[ lale |e|8d]] — 2L[C‘f‘[a’|f|5d]]. (189
There exists the freedom to choose the differential géyge*; in particular for the Lanczos
differential gaugel,,.’¢ = 0, this potentialL ;. satisfies

V2L, 2L RV 4 209 R + 20710 VR — JL9b R

_ Cahcd;d — _RC[aCb] _ %SEIIR’b]. (199

4., Potentials in even dimensions

An obvious generalisation involves the trace-free symmaetnjarf)-forms

Valazmamblhzmbm = V[alaz.'ﬂM]hbzwbm = yaseran [b1bo---bp] = Vblhz---bmalazmam’
(21a)
Valazmamblbz...bm =0 (21b)
in even dimensions = 2m. By exploiting the 2n-dimensional DDI[8,9],
ylataz-an [b1ba--b 5;]] =0, (22)

and following the same arguments as in the four-dimensional case we obtain the following
result.

Theorem 4. In even n =2m dimensions the trace-free symmetrigm, m)-form
y“az=amy p,..p, Nas atrace-fregm, m — 1)-form potentialF“1924m, .., ., given by

U2y by.wby = M Hpyby.., [a1a2 Am-1am] | [ra102--am [b1b2-+-bim—1:bm]

_ 1.2 pfaiar-apm_1lel ]
2m H[ " [ble m—1;lel b::]

laazam—1;lel gl (23)

m—1lel m]

1.2
— 3M " Hipipy-b
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Clearly a second-order equation for the potential can be obtained by taking the divergence
of (23), and it is of interest to know whether analogous simplifications as occurred in the
four-dimensional case also occur in higher dimensions.

As an example, we will examine the trace-free symmetric (3, 3)-form

U gor = 3Haer ') 4 3HYC 4. 11 — %H[ab“'[de;u@?] - %H[dem[ab;m‘;;]] (24)

in six dimensions. We obtained some simplifications in the four-dimensional case, when
we added the additional symmetry propeWyj« = O to the superpotential leading to

the additional property.j.») = 0 on the potential for the Weyl candidate, which of course
satisfiesW[.ss = 0; in an analogous manner we can choose, in this six-dimensional case,

Viabede) f = O leading toH[apcqe] = 0 and hencé/upcae) f = O. (25)

Again, in analogy with the four-dimensional case, we can introduce the differential gauge
freedom by redefining

Habcde — Vabcdef;f + %(Fabc[d;e] _ Fde[ab;c]) _ %B%Z(Fbc]ie];i _ Fe]ibc];i), (26)
where F®¢ ; is an arbitrary (3, 1)-form, and the last two terms ensure Hf4f ;. retains

the trace-free property as well as the property28). By an appropriate choice @,
we can choose the differential gauge

H™ 4 = 0. (27)
Whenever we take the divergence(2#) we obtain

v2Hbe,, 4 ZHabc[elfl;d]f + 3Hdef[ab;c]f _ %H[abmde;ic] _ 3H[ab\i[e|f;i‘f|52]]
— 3 Hyplabilitel — 3Hf[d‘l.|[ab;\if\5z% = Ube 7, (28)
which we can rearrange to
v2Habe,, ZHahc[elfl;fd] + 3Hdef[ab;\f\c] _ %H[ab\i\de;ic] _ 3H[ah|i[e|f;i|f|52]]
_ %Hdei[ab;mc] +{R® H}abcde — Uahcdef:f7 (29)

where{R ® H}*,, represents the rather long collection of terms involving products of
the Riemann tensor and the potential tensor. Next making use of the additional symmetry
property (25) together with the differential gauge choi@Y), Eq.(29) simplifies to

VzHahcde +{R® H}abcde = Uahcdef;f. (30)

A further rearrangement @BO) is possible, where, in analogy with the four-dimensional
case, we can exploit the six-dimensional DDI

Rijk[H[abC[de(Sg]] =0. (32)

Without further detailed calculations it is not possible to determine the extent of these sim-
plifications, and in particular whether all the Weyl tensor terms disappear, as happened in the
four-dimensional case. Even for the six-dimensional case, the calculations are considerably
longer than in the four-dimensional case, but it is emphasised that the same approach can
be used in all Bhdimensions.
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Unfortunately, unlike in the four-dimensional case, there do not seem obvious geometric

or physical candidatesrfy m)-forms withm > 2) to which these higher-dimensional results
can be applied.

. Discussion
First we make some general comments on the uses of DDIs:

A DDI for ndimensions is constructed by antisymmetrising aver 1 indices and so, in
general, is valid fon dimensionsand lower This applies to the results also in this paper;
however for these lower dimension the results are trivial since {Ajrit is known that

the trace-freeq, g)-form V@2=4r, .1, is identically zero in dimensions < (p + ).

In our four-dimensional investigations Bection 2 we exploited the four-dimensional

DDI (5) on two occasions, and the DIP16) on one occasion; in the analogous spinor
investigationg4] there was no need to supply this input explicitly since it is inbuilt into

the spinor formalism. The advantage of having the alternative tensor investigation is
that it suggests how and where generalisations can be made t dimensions, and
signposts where simplifications might be expected: kv 4 dimensions we exploited

the analogous®-dimensional DDI(22) in the same two stages of the argument with
analogous results, and we also noted where we could use the other analogq@4 )pDI

in the six-dimensional case. The full details of these calculations for six dimensions, and
more generally & dimensions will be reported elsewhere.

Familiar and useful results in four dimensions can be generalised to higher dimensions by
the use of the analogous dimensionally dependentidentities in higher dimensions. But the
type of tensor to which the familiar four-dimensional results apply is also generalised, and
so the higher-dimensional generalisations often apply to less common types of tensors.
So, for instance, there is no possibility of using dimensionally dependent identities to
obtain potentials for the Weyl tensor in dimensions higher than four.

It might be suspected that more general identities #%n(16), (22), (31)could be
obtained for forms without the trace-free restriction; this is not pos$@jleSo, for
instance, there is no possibility of using dimensionally dependent identities to obtain
potentials for theRiemanntensor in four dimensions. Furthermore, no other identities
can be constructed by using the traces of the fundamental dimensionally dependent
identities such agd), (16), (22), (31pecause these collapse to be trivially zero.

We next make some comments specifically concerned with applications to Weyl and

Riemann tensors:

e \We have seen that there are properties of the Weyl tensor which are very different in
four dimensions than in other dimensions; but this has nothing to do with its differen-
tial structure, since these special properties in four dimensions are algebraic, and arise
becausanysymmetric trace-free (2, 2)-form has a very special role in four dimensions.

e |tis clear that the existence of a Lanczos-type potential for a tensor — which requires
no differential conditions on the tensor — is a very different type of result from the
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existence of the electromagnetic potential — which follows from differential conditions
via Poincaé’s Lemma. However, it is interesting to note that the existence of the elec-
tromagnetic potential ifour dimensions can be deduced via a Lanczos-type potential.

The additional results for the existence of other spinor potentiald]iincludes, for
instance, a spinor proof for the existence for the spinor potential for the electromagnetic
field; this is acomplexpotential, which can be reduced to a real potential by the first Maxwell
equationF.;.; = 0[3,4].

From the point of view of general relativity, we note:

e \We can appeal to stronger existence theorfli when we specialise to spaces with
Lorentz signature, and the second-order differential equations become wave equations.

e If (in Lorentz signature) we replace the Ricci tensor with the energy—momentum tensor
via Einstein’s equations iflL9) or (19*) we find that we have to solve for the Lanczos
potential from a wave equation whose other terms contain only the energy momentum
tensor. This linear wave equation fag,;., which carries much of the information of
Einstein’s equations, is considerably simpler than the nonlinear wave equat@nfer
which is being used in a number of applications.

Finally we emphasise that, although it is not so obvious, it is possible to apply this
approach tof, g)-forms even whem # ¢, as we will report in a subsequent paper.
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